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Abstract—A new multi-dimensional model has been developed which makes it possible to calculate the

spectrally-integrated total radiative flux for a molecular-gas band based on the solution of two simple

differential equations. The new model employs the exponential-wide-band model and makes it unnecessary to

evaluate the spectral flux for a large number of wavenumbers with subsequent spectral integrations, thus

considerably reducing the numerical effort required. Comparison with spectrally-integrated results from the

differential (P — 1) approximation, on which the present method is based, and with some exact results, shows
excellent agreement for all situations.

NOMENCLATURE q, first derivative of flux with respect to
. .. spectral variation,

a constant in boundary condition for p )

differential approximation, equation (3) g6 = oqs,
b a(2—g)fe t 80 |0y
B boundary parameter, equation (34) . . ..
c curve-ﬁt);’)grameter a ( gz,  spectral flux within ith band, q;,- €

i I

C;; band strength parameter 4% total band flux, g, ¢
C,, band width parameter 0,,0%.0,, Q? non-dimensional reference fluxes,
C,  cxponential constant in Planck function . equation (20)

= 14388 cm K r position vector
d non-dimensional distance from boundary, T temperature

equation (20) u unity step function
ey ey, (spectral) emissive power (Planck function) X,y geometric distance
é unit vector in direction of flux component

considered Greek symbqls )
E,  reference emissive power « osc;llatlon.frc’:q}xency
Ei,E, E,,... exponential integral functions & s‘l’: ace ?mlssmf;iy.
A spacial variation function for absorption K a sorptlog coelhicient

coefficient, equation (A1) i wavenumber

w non-dimensional spectral decay parameter,

F,,F, functions used for curve fitting

G, H,J auxiliary functions, equations (39), (41) and
(A5), respectively

1] unit vectors in the x(£) and y(u) directions

Io, 1o, (spectral) direction-integrated intensity

equation (4a), (4b), (4¢c)
¢, non-dimensional distance
A curve fit parameter
¥,¢ curve fit functions
T optical thickness

Iy I, evaluated at reference wavenumber
K, modified Bessel function Subscri
L characteristic dimension ubscripts taining 1
I shortest optical distance between point g pertaining 1o gas
under consideration and a boundary, ! pertaining to ith gas band, orat band
equation (18) center (also used as superscript)
fl unit surface normal (pointing out of 0 reference value .
surface) P Planck-mean value (of absorption
q,q, (spectral) radiative flux coefficient) 1
I first derivative of I,, with respect to w P"“a"‘]‘,“g to lwa
spectral variation, ¢ center-line value
n spectral value
daly,
00 | (no0) 1. INTRODUCTION
do spectral flux evaluated at reference RADIATION from hot gases is of great importance in the
wavenumber, qo & = gl luwe design of furnaces, boilers, combustion chambers, etc.
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Most previous resecarch has focused on the simple
model of a gray medium. For such a medium, multi-
dimensional problems are readily solved with varying
degrees of effort and accuracy. Hottel’s zonal method
[1, 2] has often been successfully applied, but has
several shortcomings: a temperature-varying absorp-
tion coefficient complicates the analysis substantially,
while scattering effects and non-gray molecular-gas
effects are nearly impossible to incorporate. The multi-
dimensional differential approximation [3] (often
referred to as P—1 approximation) demands only the
solution to a partial differential equation, and
temperature dependent absorption coefficient as well
asscattering pose no problems. However, asin Hottel’s
zonal method, it appears impossible to integrate the
equations a priori over the entire spectrum, making
non-gray analysis very cumbersome. The Monte Carlo
method [4] has none of the above shortcomings, being
readily expanded to include the most general effects.
However, being a statistical method, it generally shows
significant scatter in the results and demands vast
amounts of computer time.

Realizing the severe shortcomings of gray-gas
analyses, a number of investigators have looked at the
complicated analytical treatment of non-gray mole-
cular gas radiation in 1-dim. media. Edwards and
Balakrishnan [5] formulated 1-dim. slab band
absorptances for molecular gas radiation based on the
exponential-wide-band model developed by Edwards
and Menard [6]. They later applied this model to a
turbulent gas layer [8, 9] for the cylindrical geometry.
The same problem was attacked by Cess et al. [10] and
by Tiwari and Cess [11]. Habib and Greif [12] have
experimentally verified a similar analysis presented by
them.

Nothingin the literature to date appears to deal with
total radiative fluxes of non-gray gases in multi-
dimensional media, except for some very crude
approximations such as the box model by Modest [13].
This is due to the fact that, with the exception of the
Monte Carlo method, spectral fluxes would have to be
calculated for a large number of wavenumbers,
followed by numerical integration over the entire
spectrum. It is the purpose of this paper to introduce a
method to predict total gas-band fluxes accurately but
with 2 minimum of effort. This will be achieved by
generating a smooth curve-fit for the spectral variation
of the radiative flux, based on the diffusion
approximation in the optically thick limit, and on flux
as well as curve slope at an optically thin to
intermediate reference wavenumber. For simplicity,
the parameters for the reference wavenumber are
obtained from the differential approximation, thus
limiting the accuracy of the present model to that of that
approximation.(Foreven better accuracy, variations of
the zonal method could be applied at the optically thin
limit.) To allow straightforward spectral integration,
the popular exponential-wide-band -model has been
employed. (This model is known to be accurate for
sufficiently high pressures, and it is assumed here that
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only then willmolecular gasradiation be ofimportance.
However, any other gas-band model may be
employed.) Comparison of results with results obtained
from wavenumber integration of the differential
approximation, as well as with exact results, shows
excellent agreement for all conditions tested.

The present model reduces the evaluation of total
band fluxes to the solution to two differential equations
and some algebraic manipulation, thus substantially
reducing the efforts required by previous methods.
While the method is at present limited to media without
particles or other non-band emitters/absorbers, and to
isothermal enclosing walls, extension to include these
should be straightforward.

2. ANALYSIS

On a spectral basis the differential or P—1
approximation, relating spectral radiative flux q, and
spectral direction-integrated intensity I,, to absorp-
tion coefficient x, and emissive power e,,, has been
known for a number of years, e.g. T3]

V- qq(r) = K,,(l') [4ebq(r)_ IOr,(r)]: (1)
Vi, (1) = —3k,(r)q,(r), )
subject to the boundary condition

agq, i = 28?8 [eguy—To,]- )
In the above equations i is a unit surface normal
(pointing into the medium), ¢ is the surface emissivity
(assumed gray for convenience), and ey, is the spectral
cmissive power evaluated at the surface temperature
and is assumed to be constant over the entire enclosure
surface. The spectral variable chosen here is the
wavenumber . Since the present paper is concerned
with molecular-gas radiation only, scattering terms
were omitted from equations (1) and (2). Some
ambiguity exists as to the value of the constant ain the
boundary condition. If the flux at the boundary is to be
continuous, a = 2 (commonly known as Marshak’s
boundary condition) [14]. However, the use of this
condition is problematic for unbounded media, as
discussed by Finkleman [15], making intensity
matching more desirable leading toa = \/ 3 (known as
Mark’s boundary condition).
Normally, the spectral quantities are of little, if any
interest. Rather, what is desired is the total radiative
flux

q= J q, dn. )
[0}

Therefore, it would be very desirable to integrate
equations (1)—(3) over all wavenumbers before a spatial
solution is obtained. However, this seems to be
impossible. To date, if the differential approximation
were to be used to predict thermal radiation from a
molecular-gas band, equations(1)-(3) would have to be
solved for many discrete wavenumbers, after which
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wavenumber integration would have to be carried out
by numerical quadrature. This would obviously be a
very tedious process, so much so that the spectral
differential approximation is usually discarded in favor
of a grossly simplified model such as the box model
[13], or of a purely numerical model such as the Monte
Carlo method [4].

In this paper.a method is presented which allows for
the approximate evaluation of equation (4) in a simple
fashion without the need for evaluating the spectral flux
at many different wavenumbers.

We assume that the molecular gas has N bands and
may be described by the wide-band model, i.e.

N
K, = 2, K(r) exp[—2ln—nl/Cyl,
i=1

(symmetric bands), (4a)

or
N
K, = Z ki(r) exp [—(;—n)/Cs], 1<

i=1

(bands with head). (4b)

It is assumed here that bandwidth parameter Cj; is
constant throughout the volume. This is done for
mathematical simplification, although it is realized that
Cy; generally increases with the square-root of
temperature. The wide-band model is chosen for
convenience, since it has been widely tabulated. This
makes possible the determination of the absorption
coefficient at the band center as [4]

ki = Ciilp, T)/Cs;i ©)

where Cy; is another wide-band parameter giving the
band strength. Since k;is a linear absorption coefficient,
equation (5) may have to be corrected by the partial
density por pressure of the absorbing gas,depending on
the units used for C,;. Equation (5) is strictly true only
for strong-line radiation; it is assumed that only in that
case is the gas radiation strong enough to be of interest.
Using the abbreviation

N
Ky = 3 KRl (40)
i=1
and setting
N .
0= ) G (6a)
i=1
N -
Ioy= Y. I (6b)
i=1

it follows that, for the ith band,
A q'gq = h‘,-(l)(']) [4(ebqi - ebwqi) - I;n]’ (7)
VIlgq = = 3Kiw(”)qigm (8)

with the surface boundary condition

: &
aqg,*fh +§1gq =0, i=12,...,N. (9
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F1G. 1. Qualitative behavior of the spectral radiative flux, gl ;
as function of optical thickness.

Here the standard assumptions have been invoked
that (i) the bands are narrow (i.e. e, varies little across
the bands and may be approximated by the value at the
band center, ey,;), and (ii) the bands do not overlap.

Looking at the qualitative behavior of the
components of g}, the flux will vary with optical
thickness, and therefore with w, as is depicted in Fig. 1.
Atacertain optical thickness the spectral flux reaches a
maximum and will decline again after further increases
in optical thickness until it asymptotically reaches the
value

; 4
Qg = — _V(eby,i—ebwm‘), KoL > 1

3K (10)

where L is a characteristic length of the system. If the
sign of the flux at large optical thickness is opposite the
one of the thin limit, the spectral flux will also go
through a mimimum before approaching equation (10}
(cf. Fig. 1).

It is seen from equations (7}-9) that the spectral
variation of q;,, depends only on the parameter w,and s
symmetric to the band center (for a symmetric band).
Thus equation (4) may be rewritten as

w @
q = J ql,(n) dn = tJ. Qg (I —mih) din—ni
0 (4]

1
- csij @) 2 (1)
o o
where t = 2 for symmetric bands, and t = 1 for bands
with heads. The last expression in equation (11) shows
that g}, /w, not ¢\,,, isimportant for the evaluation of the
total radiative flux. The qualitative behavior of g,/ is
depicted in Fig. 2.

In order to evaluate equation (11) accurately, an
empirical fit of g} /w should asymptotically approach
the optically thick and thin limits. To assure a good fit
for intermediate optical depth, one must use great care
when applying the differential approximation in the
optically thin limit and the diffusion approximation in
the thick limit.

The differential approximation, equations (1)}(3), is
knownto beaccurate for optically intermediate to thick
situations. For isothermal walls the method will also
predict the correct thin limit, i.e. heat flux rates will



FiG. 2. Qualitative behavior of the integrand of equation (11),
as function of optical thickness.

vanish as @ — 0, as long as the domain is finite. The
important quantity

liﬂ; (@nl @),

however, is very rarely predicted accurately by the
differential approximation. In some cases (unbounded
media) the differential approximation may predict a
zero or infinite slope for w — 0 combined with rapid
changes for small w, which would lead to a poor curve
fit. Even if the differential approximation is well-
behaved at the thin limit, numerical evaluation of
equations (7)-(9) with @ =0 would be somewhat
awkward. Thus we choose to determine the value of
q‘s,,/w and of its slope at a non-zero wy = w(y,)
evaluated at some reference wavenumber 1.
Expanding g}, into a truncated Taylor seriesaround w,
leads to

&

+(w—wy) +O0[(w— wo)z]

©o

i i
ng = q&’l
©o

= qo+H{w—wo)q; +Of(w—w,)’). (12)

If the differential approximation is well-behaved in the
thin limit, the choice of 55, will be unimportant. Ifitis not
well-behaved at w —» 0, the choice of w, > 0 will assure
a good fit for w > w,. The values for q, and q, are
determined from equations (7)—(9) directly or after
differentiation with respect to w, respectively,

V4o = k;[4(€oni— €beni) — Lol (13)
VIp = —3Kiwoq0, (19)
and

V-q, = —kwol; + 5, {4ep i —enand— o], (15)
VI, = —3K,w00; —3K,qo, (16)

with the boundary conditions
aq i+ ——1, =0, k=01 a7

2—¢

In the optically thick limit the spectral flux will
approach the diffusion limit, equation (10), everywhere

MIcHAEL F. MODEST

except for regions close to a wall. Well inside the
medium the diffusion approximation gives very
accurate results even at moderate optical thickness. In
order to assure a good curve-fit, it would be desirable to
augment equation (10) by a boundary correction term.
This may be achieved by applying the differential
approximation to aregionclose to a flat wall leading to

4

W e

4 .
Vey,;; — ;\—/—‘5 {(ebqi — Cg)l

1
- .3_’\;—(0 [\/5 Vep,i+(b —ﬁ)ﬂ(ﬁ ° Vebqi)]}w

x e~ V3l R, (18)
In the above equation I, is the optical distance from the
point under consideration to the closest point at the
wall (based on the absorption coefficient at the band
center), i is the surface normal there, R is some higher-
order remainder, and b is an abbreviation for

2—¢

b=a——.
£

(19)

The subscript w at the correction term indicates that all
terms inside the brackets are to be evaluated at that
point on the surface. Details for the derivation of
equation {18) and the remainder term R are shown in
Appendix A.

For convenience we now introduce a number of non-
dimensional quantities,

=KoL, 1o=1twy), d=1/3L/xL, (20a)

472 N
g, =—- ﬁ e'Vebm‘/%'e,
. 412 . R
0f = — Ja [V/3Veun+ b= /Bt Veyyila -2
=(b+/3)00" 8 (20b)

1 o
0, =—[1-wq,-¢/q,-¢],
To

4T0 .. -
QJ = — m(ebqi_ebwqi)wn * e/qO ‘e

where Lis some typical dimension and é1is a unit vector
into the flux direction under consideration. In the
above definitions  represents a typical spectral optical
thickness, Q, compares reference fluxes obtained from
the diffusion approximation with those from the
differential approximation, Q, describes the curvature
of ¢i, with respect to spectral variation, and Qj
compares fluxes due to an emissive-power jump at the
boundary with the differential approximation.

Using these quantities, a general expression for the
spectral flux which satisfies equation (12) as well as
equation (18) may be generated such as

q;,,’é(l)0~ —Ac(z—10 _
m;—e CT =Yzl +¥(x)  (21)
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where
00 =2 Fien - L - pi e~
+ QT 4 Fille—dr], (22a)
Fi(x) =[2+x) e *+x—2]u(x), (22b)
Fyx) = [~ +x— 1Tu(x) = F,(x)+ Fy(x). (220)
Here u(x) is the unit-step function, i.e.
0, x<0
u(x) = {1’ > 0}, (229)

and primes indicate differentiation with respect to the
argument. Equation (21) approaches the correct
“optically thick limit, equation (18), and also equation
(12) for w - w, provided the unknown correlation
constants 2 and c are determined from
$(c)=0;—c+ %Fx(a'o)
*
8L i Fy e —deo]
To
+ 2 et o= el = —0-1ep@). 3
0

Since equation (23) is a single equation, one of the
constants 2 and ¢ may be chosen freely, say 2 = 1. In
fact, the possibility of 2 # 1 was included in equation
(2D)only to allow for such cases whenequation (23) does
not have a real positive root. If this occurs, the
smoothest transition from optically thin to optically
thick conditions is achieved by choosing the smallest
possible value of 2> 1, leading to the additional
equation

¢'lc) = —(A—1D[¢()+c"()]- (24)
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Thus whenever possible we choose 2 = [ and cis a real
positive root of equation (23). If there is no real positive
root then equations (23) and (24) form a set of two
equations in the two unknowns 2 and c. Evaluation of
the constants 1 and ¢ is sumnmarized in Table 1 and
discussed in detail in Appendix B.

Spectral integration to obtain total gas-band flux
may now be carried out. If the exponential wide band
model is used to describe the absorption coefficient,
equation (11} applies and may be integrated
analytically leading to

Aetg
o-é= qo-é{fl—w(ronj [1—e™]
.CTO
Ql [cr,—1+e™ %]
ToTg
Q*

[(c—d)r,— 1 +e~ €~ DeJy(c—d)

Tog

+ %:Q:s [Eslcty)—E (dry)

+1In(c¢/d)]ulc —d)} (25)
where 1, = tf{w = 1} is the optical depth at the band
center. If a different spectral model for the absorption
coefficient is chosen, equation (4) in conjunction with
equation (21) may have to be integrated numerically. It
should be noted that the present method isindependent
of the spectral model (as long as the spectral
dependence is separable). It yields accurate results for
the total band flux needing only the solution to two
differential equations. As applied here the accuracy of
the present model is limited to the accuracy of the
spectral differential approximation,

Table 1. Regimes for correlation constants cand 2

Regime ¢ 2 Comments
I ¢0)>0 root of 1 cf. Fig. B1
¢'(0) <0 Plc) = only one positive real

root exists

IIa  ¢(0)>0, ¢'(0)>0 root of ¢(c) = 1 cf. Fig. B1
¢lCmin) <O, R* >0 > Coin larger root since limit
is approached from below
IIb  ¢(0) >0, ¢'(x0) >0 root of ¢(c) = 1 cf. Fig. Bl
Plemin) <0, R* <0 € < Crin smaller root since limit
is approached from above
Ilc  ¢(0)> 0, $'(0)>0 root of cf. Fig. B2
$emic) > 0 A-1=— —¢—, = i >0 for 2 > 1 only one positive
(c¢) ¢ real root exists
I ¢0)<0 root of ¢(c) = 1 cf. Fig. Bl
¢'(0) >0 € > Cpin only one positive real root
exists
Note: R* = R+ é/q, ¢ 2 0limitation may be replaced by examining the regime of adjacent points; i.e. regime IIa is always

bounded by regime III or Ilc, while IIb is always bounded by regime 1 or Ilc.
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3. ILLUSTRATIVE EXAMPLES

In the following, two 1-dim. and one 2-dim. examples
will be discussed in order to examine the strengths as
well as the limitations and weaknesses of the proposed
model. In the first example a semi-infinite medium
bounded by a black plate with an emissive power spike
close to the surface is investigated. This test case
includes all possible regimes discussed in the previous
section and also addresses other problems associated
with the differential approximation, viz. an emissive
power spike close to a boundary and an optically thin
semi-infinite medium. However, in order to make exact
wavenumber integration possible the absorption
coefficient is assumed constant in this example. In the
second test case a medium between parallel plates with
symmetric emissive power distribution is examined.
Variations of emissive power and absorption coefficient
are chosen artificially to make comparison with exact
solutions possible. In a final example a simple 2-dim.
case is chosen of parallel gray plates separated by a gas
with cosine-varying emissive power distribution.

3.1. Medium with emissive power spike
Consider a 1-dim. medium bounded by cold black
walls extending from & = y/L =0 to £ —» oo with an

emissive power distribution of
ebr]i = Eqié e—C (26)

Examination of equation (26) shows that the emissive
power is zero at £ = 0, has a maximum at € = 1, and
decays exponentially for large £. Assuming a constant
absorption coefficient and using equation (20a) reduces
equations (13)-(17) to

45—31390 = 4ToE,(1—8) €75, (272)
2744(0) = 40(0), (27b)

qi —313q, = 2t,[310g0+2E,(1—&) 7%, (28a)
22041(0) = 41(0) —27,9,(0). (28b)

The solution to these differential equatlons is
straightforward resulting in

9o = Enicx{t@ﬂ e~ VIl g (14 Cy8) e-f},
2+./3
29
g, =E;7,C,
y {2(1 —C3+210—10C2) = /3C,1o(1 = Cy +270)E
2+/3)Ca10
x g™ VIr0d (i - c2+c> c"'} (30)
C2
where
Ci=—2t . c,= 135 31)

Cy(1-3:%)’

Obviously, the choice of the reference wavenumber,
resulting in 1, influences the results of g, and ¢, and,

1-+3¢3°
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therefore, the values of the correlation constants ¢ and
A.Onthe other hand, if the spectral flux predicted by the
differential approximation is well-behaved in the
optically thin limit, then any reasonably small value for
7o should result in good predictions of the total flux as
calculated from equation (25). This was verified by
varying 7, between 0 and 2: If Marks boundary
condition is employed the results from equation (25)
virtually coincideforall values of 1,. The sameis true for
Marshak’s boundary condition, if the limit t,— 0 is
taken after the solution of equations (27) and (28) has
been found. However, if the solution to the differential
approximation, equations (15}<17), is found after
setting 1, = 0, then ¢, becomes unbounded, cor-
roborating Finkleman’s reservations towards this
boundary condition for unbounded media. Under
these conditions evaluation of the total flux from
equation (25) results are predicted too low (in absolute
value) by approximately 50%. In all the following
examples the value for the reference wavenumber has
been fixed so that 7, = 0.5, an optical thickness large
enough to make results from the differential
approximation meaningful, yet small enough to
accurately treat the important effect of the band wings.

Figure 3 demonstrates the behavior of the non-
dimensional quantities ¢(0), ¢'(c0) and ¢(c,;,) which
are important for the evaluation of the correlation
constants 2and ¢ (cf. Appendix B). The present example
was chosen because the emissive-power spike forces the
medium through all possible regimes with rapid
variations of the above parameters, posing a severe test
for the present method. At the bottom of the figure the
range of the different regimes is indicated. As discussed
in Appendix B, the distinction between regimes ITa and
IIbcan befound byevaluating the sign of the remainder
in equation (18). However, from physical consider-
ations and as seen in Fig. 3, regime Ila will always be
adjacent to regime III and/or Ilc, while IIb is always
adjacent to I and/or Ilc.

The heat transfer results are shown in Fig. 4. Also
shown are results obtained by finding the solution to
equations (7)—(9) with wavenumber as parameter, and
subsequent integration over wavenumbers using
numerical quadrature (labeled ‘integrated differential
approximation’). In order to avoid crowding of the
figure, the exact solution is shown only by a few data
points, and is found from the papers of Modest [16] or
Edwards and Balakrishnan [5] as

E

C J {1 2E3[Ig(6 6)]} bm(é)
3ioni

@ , , dél
—J {1-2E5[1(¢' ~ O epnl) 57— (32
z &-¢
Fortheoptically thick limit,7, » 1,equation(32)canbe
evaluated analytically, resulting in (after considerable

manipulation)

G gy e ¢ Ei(¢),

33
CyiE, (33

T, » 1.
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F1G. 3. Behavior of several curve-fit parameters and regime boundaries for medium with emissive power spike.
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FiG. 4. Non-dimensional total band flux for semi-infinite medium with emissive power spike.




1540

Comparison between the exact solution and the
integrated differential approximation shows that the
differential approximation generally overpredicts the
level of heat transfer by up to about 15%, as is to be
expected. The present method is generally very close to
the integrated differential approximation, withinabout
3% of the maximum flux. The error is largest in the
vicinity of the boundaries, indicating that the boundary
correction is less than perfect. Errors also occur in the
vicinity of the asymmetric maximum of the emissive
power since equation (10) does not hold for moderate
optical depths in the vicinity of such points.
3.2. Symmetric medium with variable absorption
coefficient

Consider a 1-dim. medium 0 < £ = y/L < 1 withan
emissive power function

o = Ei{1—3QE-1[1+2¢-1)%7%), (39
and with an absorption coefficient
U(8) = m(QL = 1,[1 4325~ 1)*]. (35

This particular £-dependence of equations (34) and (35)
was chosen because it allows a relatively simple
solution of the spectral differential approximation,
equations (7)-(9), and its subsequent analytical
integration over wavenumbers. After considerable
manipulation one gets, assyming black walls and using

Mark’s boundary condition (a = ﬁ)

q., 8 { 1+ \/Ermco
= x —
E; 31,0 2./3t0

X [e—ﬂtmw(l—x)_e—ﬂrmw(l+x)]}’ (36)

_ 8x (l— 2 )+ 2
CuEy 2./3 ﬁrm 3\/51,2,,
X {[14+/3tn(14x)] e~ =3m
—[14./315(1—x)] e~ @ +xW3m}

- % (1= x2){GI(1 —x)/37,]
—G[(1+x)/31,]} (37)
where
x=4QE-1)[1+@E—-1), (38)

! d
G(¢) = J (l—e‘g')Tt =E(&+Iné+y, (39)
0

and y = 0.5772...is Euler’s constant.

The exact solution to the present case can again be
calculated by the theory given by Modest [16] and
Edwards and Balakrishnan [5] so that, after some
manipulation,

d 2
C;;q;f - = = {HIt(l = X)] = T H 71— )]
i~y m

—H[t (1 +x)] -+t H'[1(1 +x)]} (40)
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where
H(@) =%t+4°[n t+y— 1]+ E;()—Es(x)—%  (41)

is the twice-integrated slab-band absorptance. For the
present method, g, and g, are needed and are
determined from equations (13)(17). The solution to
go, of course, is identical to g%, in equation (36) with
1,0 replaced by 7 = 1,,000. The solution for g,
follows similarly as

W,y 8 1
= dyf——1 141 /3
E 37, {x (ﬁro * +2\/_ro>

x [e-ﬂro(l -x) _e-ﬁro(l +x)]

ni

+ %(1 +\/§ro) [e“’j“’“""+e"/3'°‘”"’]}.

42)

Again, the results for g, and g, are used to find the
correlation constants 2 and c, after which total band
fluxes are determined from equation (25). Comparison
of the results is shown in Fig. 5. The wavenumber-
integrated differential approximation, equation (37),
generally overpredicts the heat transfer rates by
approximately 20%; due to errors in the optically-thin
band wings. It should be noted that, in order to allow
closed-form wavenumber integration of equation (36),
Mark’s boundary condition was used; Marshak’s
boundary condition would have resulted in con-
siderably better accuracy. The accuracy of the present
model as compared to the integrated differential
approximation, on which it is based, is outstanding,
with a maximum discrepancy of roughly 2% near the
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boundary. Obviously, in this example, the accuracy is
aided by the fact that there is no asymmetric emissive-
power peak within the medium.

3.3. Two-dimensional slab with cosine-varying emissive
power

As a final example, we consider the case of a slab
0 < ¢ = y/L < 1 withtheemissive power varyinginthe
direction parallel to the surfaces, ¢ = x/L, according to

epni(t, &) = E, (43)

with space-independent absorption coefficient and
bounded by cold walls, e,.,; = 0. Even though the
system is 2-dim., equations (7)-(9) are readily solved
because of the cosine dependence, leading to

; COS apt,

qé;f = (qE;rl)u _ %; _ _ cosh ﬁ(;g—l) sin au
ni i cosh B + 3 sinh 8
T
(44)
dhi (ifq)c =% sinh ﬁ(;f "D cosan @5)
ai nt cosh § -+ — sinh §
3t
where
B =1@*+3t3)12 (46)

In this case band integration of the spectral flux
obtained above from the differential approximation
cannot be achieved analytically, but is readily achieved
by numerical quadrature. For a simple 2-dim. problem
suchas this, it is also possible to find an exact analytical
expression for the band flux by first evaluating the
spectral directional intensity [2, 4] as

. i T [red . _
}‘gﬂ(ﬂy év S) = —T; J‘ ebni[}‘s(‘u’ S, S)] < o dS (47)
0

where sis a distance non-dimensionalized by Linto the
direction of unit vector §, and r,is the non-dimensional
distanceto the wall. Expressing direction in terms of the
polar angle ¢ (measured from the positive &-axis) and
the azimuthal angle  (measured from the gi-axis in the
plane perpendicular to &), and using equation (43)
results in

¢
I;n(lla é: ¢1 l//) = Em'%J‘ Cos {aD‘—(é_él)
0

X tan ¢ cos Y]} e 7@ TEVeos ¢

d¢’

X
cos ¢’

0<p<z, (48)

2
[t
=E.,.~—J cos {a[pu+(&—¢&)
T
X tan ¢ cos Y} e¥& "9eosd
& =
— S¢S
" Cos ¢ 2 psm

From the expression {or the spectral intensity the total
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band flux may be evaluated as

12 fn dw
C3"I J J Iy sin® g dpcosy dy —,  (49)
oJo 1]

A 1 2z (= dw
Qe = C3,-J J j I, cos ¢ sin ¢ d¢ dyp —.
0oJo Jo )

After some manipulation and carrying out the spectral
integration this leads to

i 4 [~z 2 z 1-¢&
e 2 +
CyEpsinan m )y Jo o Jo

x [1—e /¥ sin(az tan ¢ cos i)

(50

X E sin? ¢ d¢p cos ¢ dif,

(51)
qss —tgz/cos
Cs;E,; cos ay n L J J [1—eme4]
x cos (xz tan ¢ cos l,’/); sin ¢
x cos ¢ d¢ dyf (52)

where the last three integrations have to be carried out
numerically. However, if only the strong-band limit is
needed, i.e. results for 7, — oo, equations (51) and (52)
may be evaluated analytically leading to

a1-9
gl (1, > ) = ['[ Ko(2) dz

o
+J Koz} dz]C3,E sin e,  (53)

‘If;g(fg - 0) = {Ko[a(1-8)] —Ko[af]}csiEqi Cos ap
(54

where K|, is the modified Bessel function, e.g. [17].

Toevaluate the band fluxes by the present method, g,
and ¢, need to be determined. Again, g, is found by
setting T = 7, in equations (44)-(46). g, may be found
by either solving equations (15)—(17), or by differen-
tiating equations (44) and (45) with respect to 7. In
either case

Wold1p

_ %% 2bfi,
E,; sin ap

165 {({xz—-‘j‘cé)(cosh Bo+ 3

2 2b8
x sinh ﬁo) +[3t5 ((I +5; °> cosh B,
+[)‘0<1 + 2—b> sinh ﬁ0>

3‘[0

—a (cosh Bo + 3 4bBo sinh /30)]

x cosh f(26—1)
—Brf,(cosh Bo + 2bBo sinh ﬂo)
31,

X Bo(26—1) sinh fo(26— 1)}

2b 2
= (cosh Bo + Bo ginn /30) ,
370

(53)
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oottt f[aag (s g . 2060
E,; cos op 8p3 {[3Toﬁo(51nh Bo+ 3,
x cosh ﬁo)

—az(cosh Bo + 4bbo sinh ﬁo)]
: 37,
x sinh fo(2E—1)

2b
+3r§<cosh Bo + P
37,

sinh ﬂo)

x Bo(26—1) cosh (25~ 1)}

+ <cosh Bo + 256
317,

2
sinh Bo) . (56)
As for the other examples, the values for g, and q, are
used to form the non-dimensional parameters Q,, Qf
(which vanish for flux calculations in the &-direction),
Q, and Q5 (which vanishes for the pu-direction), which in
turn are used to determine the correlation parameters ¢
and 1 from equation (23) and the band flux from
equation (25). The results using all three methods are
shown in Figs. 6-11. Figure 6 shows the case of « = 0
and ¢ =1, ie. a 1-dim. constant-temperature slab
bounded by black walls. The exact result for this case
has already been obtained by Modest [16] and follows
directly from equation (52) for all optical thicknesses.
As expected, the integrated differential approximation
overpredicts fluxes by up to approximately 10%, in
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F1G. 6. Non-dimensional total band flux for one-dimensional
constant-temperature slab with black walls.
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particular close to the wall with its emissive-power
jump. The present model virtually coincides with the
integrated differential approximation everywhere.
Figures 7 and 8 show-the flux across the slab for a
slightly 2-dim. case of ¢ = 0.1, and for « = 1. Because of
the difficulty of evaluating equation (52), exact values
are given only for the limiting value of 7, — co (since the
wallfluxis proportional toln 7., no exact valueis given
for £ = 1). The results are essentially the same as for the
1-dim. case, although, as expected, the flux diminishes
somewhat with growing a. Figure 9 shows the case of
gray (e = 0.5) bounding walls for @ = 1. The fluxes are
essentially halved because of the reflection from the
cold wallsinto the medium. No exact solutionis readily
available for this case, but it may be assumed that the
differential approximation will do as well as for the
black-walled case. Again, the present model shows
excellent agreement.

Figures 10 and 11 show fluxes in the gy-direction, i.e.
parallel to the plates. For small values of o the
differential approximation is ill-behaved in the
optically-thin limit as is easily seen by examining
equation (44): if one goes to the limit & — 0 without
shrinking a, one gets

lim — e 4

57
w-0 WE;sinay « 57

which blows up for small values of a. On the other hand,
ifonesetse = Q before shrinking w, thesame expression
becomes identically equal to zero. Thus equation (44)
has two different limits as «.and w approach zero. The
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result is that the integrated differential approximation
strongly overpredicts axial fluxes for small values of «
(Fig. 10) with slow improvement for larger values such
asa = 1(Fig. 11). Evenforrelativelylarge valuesof e the
error diminishes only slowly (approximately 20% for «
= 10). This may be explained by the infinite number of
unattenuated emissive power peaks and valleys behind
each pointinthe axial direction. For the case of « = 0.1,
the present method appears to perform exceptionally
well,indeed much better than the integrated differential
approximation. This is due to the fact that the choice of
7o = 0.5 chops off the ill-behaved optically-thin limit.
However,achoiceof 7y < 0.5 would haveresultedinan
overprediction, while a choice of 15> 0.5 would
produce a slight underprediction of heat fluxes. Indeed,
for larger values of a (Fig. 11) the present method and
the integrated differential approximation nearly
coincide again, both producing an error of roughly
50%. One may conclude that, due to its nature, the
accuracy of the present method is limited by the
accuracy of the integrated differential approximation.

4. SUMMARY

Because of the complexity of the problem, accurate
multi-dimensional calculations of the total radiative
flux generated by a molecular-gas vibration-rotation
band have, to date, been limited to Monte Carlo
evaluations. In the present paper, a model has been
developed that allows the accurate prediction of the
total band flux in multi-dimensional media based on
the solutions to two simple differential equations
(governing the optically thin limit) and on the diffusion
approximation (governing the optically thick limit). As
the present model is based on the differential (P—1)
approximation, its accuracy is limited by the accuracy
of that approximation. Comparison with exact
solutions shows the differential approximation gener-
ally to be within 10-15%,.

Thus the present model makes it possible for the first
time to calculate total radiative band fluxes from
molecular gases accurately and efficiently, resulting in
vast computer time savings over other accurate
methods such as the Monte Carlo method. While the
model is at present limited to gas mixtures without
particles surrounded by isothermal surfaces, expansion
of the model to allow for particle radiation and non-
isothermal walls should prove fairly straightforward.
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APPENDIX A
DEVELOPMENT OF THE BOUNDARY-CORRECTION
TERM

Since the diffusion approximation breaks down in the
vicinity of a boundary, even for optically thick situations,
equation (10) must be augmented by a boundary-correction
term. If the absorption coefficient is very large, ie. k,L > 1,
where Lissome characteristic dimension, then, for a point very
close to the boundary, the medium appears to be semi-infinite
bounded by a plane wall. Toimprove on the diffusion equation
one may solve the problem of a 3-dim. semi-infinite medium,
employing the differential approximation and perturbation
methods. To accommodate spacial variation ofthe absorption
coefficient we let x,(r) = 7f(r), where 7 is a large non-
dimensional constant and £,(r) is of order unity. Transforming
the spacial coordinates as

£= jzA(Z) dz, (A1)
0

for the direction pointing perpendicularly into the medium,
and in a similar fashion for the tangential directions, leaves to
solve the equations

(A2
(A3

V-q, = 1[dey,— 1,1
Vi, = —31q, t>»1,
subject to the boundary condition

E=0: bq, n=dey,,—I,, (Ad)
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where the operators are with respect to the transformed
coordinates. Eliminating q, from equations (A2)-(A4) and
setting

. 1
I =J({) e™V*¥ 4 4e,, + 3 2v eb,,+0{ } (A5)

yields a new equation for the unknown function J

1
V2J—2./3hVJ = 0{1_2}

(A6)
subject to
E=0: ba-VJ—/3(b+./3)
4 1
= 12t(ey, — €pwr) —4b01* Ve, + ;V’eb,,%— 0{7}' (A7)
T

Now, assuming that t£ is of order unity or smaller (only thenis
a boundary-correction term necessary), or ¢ « 1, it follows
from a perturbation analysis that

4/3 PR
wq ——=F0"(V 0
b \/—(ebq (2 T \/§(b+\/§)n ( ebq)
1

T b \/—{V (ebq ebwq)
1
—_ v? ,,c} o{——},
x(ﬁ(b+ﬁ) 1é)ﬂ oo+ 01

where the subscript o denotes evaluation at the origin at the
wall.(Note thatin some cases evaluation at the wall takes place
before the operator is applied, and in other cases afterwards.)
Therefore, using equations (A3) and (AS) the flux near a
boundary may be expressed as

(A8)

4n s
qq = - Ws(ebq_ebwq)o < V3K

4

b
Ve, ——— —ep
37 { ebq b + \/5 [V(ebq €pw r))o

+ (# - 1>V(ebq|o - ebwn)] e—./!'xt}

4 4
~————{R,+R,a} e V- —R,, (A9)
wWe+S3) 903
where the R are remainder terms,
b
Ry = —=V[i-(Vey,).], (A102)

NE)

Ry =(Vie,),+ )V’(ebnlo— €hwy) (A10D)

+/3
R, = V(Ve,,). (A10¢)

R, isahigher ordertermin the plane of the boundary, while R,
is in the direction perpendicular to it. R, is the remainder for
the diffusion approximation far away from boundaries. If
equation (Al) is applied, equation (A9) reduces to equation
(18)in the main body of this paper. Evaluation or estimation of
the remainders is required only if the sign of R* is needed as
outlined in Appendix B [cf. equation (B3)].

APPENDIX B
DETERMINATION OF CORRELATION CONSTANTS

In order to determine the total band flux a unique positive
value for the correlation constant ¢ must be found as a root of

1545
the equation [cf. equation (23)]
Qr ~dro
)= 0,— Fy(cto) Y € Fy[(c—d)to]
o
Q3 —dx -
tze °Fallc—d)to] =0, (B1)
0

Checking the second derivative of ¢, it is found that ¢ has no
inflection point as long as

(Q:d+0:)/(0,—

—dt

1) > 0. (B2)

Far away from the boundary e ™% « 1, and the magnitudes of
QF and Q, become irrelevant. Close to the boundary |Q,]

> |Qt], while 8, 0%, and Q, may all three beexpected to have
the same sign from physical considerations (i.e. a temperature
jump at the wall with immediate strong decline inside the
medium appears physicallyimplausible). Thus wemay assume
that ¢(c) has noinflection points (or can beforced to have none
by dropping the Qf and/or @, term). This guarantees that
there canbe, at most, two positive real valuesfor the constantc.
We distinguish the following regimes (Fig. B1):

()

80 =0, >0, loo)= —1+2 4 L0 w g,
3 2
@ 40)>0, P(0)>0;
am 40) <0, $(0)>0;

A fourth possibility, i.e. when ¢(0) and ¢'(e0) are negative, is
discarded on physical grounds: a negative ¢(0)implies that ¢,
grows faster with optical thickness at 7, than at the thin limit
(positive curvature at 1, in Fig. 1); a negative ¢’(c0), on the
other hand, implies a switch in flux direction between the
optically thin and thick limits; it is assumed, therefore, that a
negative ¢(0) can only be forced by a positive ¢'(c0).
Itisseenfrom Fig. Bl that regimes [ and Il have one unique
solution for ¢, while in regime II either zero or two roots are
found, depending on whether ¢(c,;,) is positive (no root) or
negative (two roots), where ¢,,.;,, is the unique root of ¢’(c) =
(cf. Fig. B1). While two roots are mathematically somewhat
undesirable, that possibility is a physical necessity: if
¢'(00) « 1 [corresponding e.g. to a locally near-isothermal
medium for which equation (18) would underpredict the flux]
equation (18) should obviously be approached from the top,

$'(0)>0

¢ (c)

Fi1G. Bl.
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¢(c)

0 min .~
c

~(A-1)c'(c)

requiring ¢ = ¢, < ¢, (regime 11b); on the other hand, if
¢(0) « 1 {corresponding to small curvature for gt (w) at the
optically-thinlimit] equation (18) should be approached from
below (¢ = ¢; > ¢ regime 11a). For the general case the
correct root may be found by either checking adjacent points
in the medium, or by determining the sign of the remainder

R* =R-&/qyé (B3)

where R is the remainder in equation (A 10).

H (i) > 0,equation (23)cannotbesatisfiedunless 1 # 1:
for 2 =1 no value for ¢ can bend the shape of the curve
described by equation (21) strongly enough to obtain the high
gradient desired at 1, (described by @,). In order to overcome
this problem, the spectral variation is spliced together in two
parts: a low-curvature part, ¥(z), plus an overlay which
rapidly decays for positive values of (t — 7). In order to avoid
implausible inflection points in equation (21) we demand a
positive overlay, i.e.y/(ro) < 1, which necessitates ¢ < ¢.,;,and
A > L.If wefurther postulate a minimum value for 4, to assure
smoothest possible transition, equations (23) and (24) yield

Fi1G. B2. unique values for 2 and ¢ (cf. Fig. B2).

EVALUATION DES FLUX RADIATIFS SPECTRALEMENT INTEGRES DES GAZ
MOLECULAIRES DANS DES MILIEUX A PLUSIEURS DIMENSIONS

Résumé—Un nouveau modéle 4 plusieurs dimensions est développé pour permettre le calcul du flux radiatif
total spectralement intégré pour un gazmoléculaire a bandes, 4 partir de deux équations différentielles simples.
On emploie le modéle exponenticl & bande et il n’est pas nécessaire d’évaleur le flux spectral pour un grand
nombre de nombres d’onde avecintégration spectrale, ce qui réduit I'effort numérique. Une comparaison avec
des résultats spectralement intégrés a partir de I'approximation différentielle (P — I) sur laquelle la présente
méthode est basée, et avec quelques résultats exacts, montre un excellent accord pour toutes les situations.

BERECHNUNG DER SPEKTRAL-INTEGRIERTEN WARMESTRAHLUNG EINES
MOLEKULAREN GASES IN EINEM MEHRDIMENSIONALEN MEDIUM

Zusammenfassung—Es wurde ein neues mehrdimensionales Modell entwickelt, welches die Berechnung der
spektral-integrierten Gesamtstrahlung der Banden eines molekularen Gases durch die Losung von zwei
einfachen Differentialgleichungen gestattet. Das neue Modell enthalt das exponentiale Breitband-Modell und
macht die Berechnung der spektralen Strahlung fiir eine groBe Zahl von Wellenlingen mit nachfolgender
spektraler Integration iberfliissig. Auf diese Weise wird der numerische Aufwand reduziert. Ein Vergleich der
spektral-integrierten Ergebnisse mit der differentiellen (P —1)-Approximation, auf der die beschricbene
Methode beruht, mit einigen exakten Ergebnissen zeigt eine hervorragende Ubereinstimmung in allen
Bereichen.

OUEHKA CIEKTPAJILHO YCPEAHEHHBIX MOTOKOB H3NYYEHHA
MOJIEKVYJIAPHLIX TA30B B MHOFOMEPHbBIX CPEJAX

Annotauma—Pa3pa6oTana HOBas MHOTOMEPNAS MOJICAb, NO3BOIAIOWAR PUCCHHTBIBATL CMEKTPANILHO
MUTETPHPOBANKLIN MOMHLIT MOTOK M3NY4eHHS A7 PeaibHofl 110;10Ckl MOJCKYIAPHOTO I'd3d H2 OCHOBE
pewmenns Asyx npocteix  anddepenusanbHex  ypaBhenuit. B noBoli  Moaenu  ucnosaslyercs
JKCMOHEHUHAILHAS MOIEAL 30HE 60bLION WHPHHBL, YTO HCKAIOYACT HEOOXOAHMMOCTL LIPOBOIMTDL
OUEHKY CNEKTPAALHOrO MOTOKA AN GOAbUINX BOJHOBBIX YHCEN € MOCTCAYIOUMM CIHEKTPAJIbHbIM
MHTETPHPOBAHHEM H NO3BOAAET 3HAYNTENBHO COKPATHTL YHCACHHBIC pacteThl. CpaBiiene pe3yabTaTOB,
10.1y4eHHbIX ¢ NoMOLbIo AnddepeHUaabHOrO npubmikenns (P — 1), ACKAUICTO B OCHOBE HIPEI0KEH-
HOCO METOA:, C HEKOTOPLIMH TOYHBIMH PE3yNbTaTaMM [4eT XOpOllee COBNUACHNUE L8 BCCX CIY4ACB.





